Self-assembling peptide-enriched electrospun polycaprolactone scaffolds promote the h-osteoblast adhesion and modulate differentiation-associated gene expression.

نویسندگان

  • Roberta Danesin
  • Paola Brun
  • Martina Roso
  • Florian Delaunay
  • Valérie Samouillan
  • Katya Brunelli
  • Giovanna Iucci
  • Francesca Ghezzo
  • Michele Modesti
  • Ignazio Castagliuolo
  • Monica Dettin
چکیده

Electrospun polycaprolactone (PCL) is able to support the adhesion and growth of h-osteoblasts and to delay their degradation rate to a greater extent with respect to other polyesters. The drawbacks linked to its employment in regenerative medicine arise from its hydrophobic nature and the lack of biochemical signals linked to it. This work reports on the attempt to add five different self-assembling (SA) peptides to PCL solutions before electrospinning. The hybrid scaffolds obtained had regular fibers (SEM analysis) whose diameters were similar to those of the extracellular matrix, more stable hydrophilic (contact angle measurement) surfaces, and an amorphous phase constrained by peptides (DSC analysis). They appeared to have a notable capacity to promote the h-osteoblast adhesion and differentiation process by increasing the gene expression of alkaline phosphatase, bone sialoprotein, and osteopontin. Adding an Arg-Gly-Asp (RGD) motif to a self-assembling sequence was found to enhance cell adhesion, while the same motif condensed with a scrambled sequence did not, indicating that there is a cooperative effect between RGD and 3D architecture created by the self-assembling peptides. The study demonstrates that self-assembling peptide scaffolds are still able to promote beneficial effects on h-osteoblasts even after they have been included in electrospun polycaprolactone. The possibility of linking biochemical messages to self-assembling peptides could lead the way to a 3D decoration of fibrous scaffolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering

Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...

متن کامل

Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration

A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling pept...

متن کامل

P 99: Self-Assembling Peptide Scaffolds as New Therapeutic Method in TBI: Focused on Bioactive Motifs

Traumatic brain injury (TBI) is a common reason of brain tissue loss as a result of tumors, accidents, and surgeries. Renewal of the brain parenchyma is restricted by many reasons such as inimical substances produced as the result of trauma and also inflammatory responses. A strong cascade of inflammatory responses begins as a result of TBI which include recalling peripheral leukocytes into the...

متن کامل

Electrospun Scaffolds for Osteoblast Cells: Peptide-Induced Concentration-Dependent Improvements of Polycaprolactone

The design of hybrid poly-ε-caprolactone (PCL)-self-assembling peptides (SAPs) matrices represents a simple method for the surface functionalization of synthetic scaffolds, which is essential for cell compatibility. This study investigates the influence of increasing concentrations (2.5%, 5%, 10% and 15% w/w SAP compared to PCL) of three different SAPs on the physico-chemical/mechanical and bio...

متن کامل

3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering

The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 2012